RESEARCH ARTICLE

OPEN ACCESS

A brief review on mixed convection heat transfer in channel flow with vortex generator for electronic chip cooling

S K Mandal*, Dipak Sen**

*(Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Yupia ** (Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Yupia

ABSTRACT

In an effort to increase processor speeds, 3D IC architecture is being aggressively pursued by researchers and chip manufacturers. This architecture allows extremely high level of integration with enhanced electrical performance and expanded functionality, and facilitates realization of VLSI and ULSI technologies. However, utilizing the third dimension to provide additional device layers poses thermal challenges due to the increased heat dissipation and complex electrical interconnects among different layers. The conflicting needs of the cooling system requiring larger flow passage dimensions to limit the pressure drop, and the IC architecture necessitating short interconnect distances to reduce signal latency warrant paradigm shifts in both of their design approach. Additional considerations include the effects due to temperature non-uniformity, localized hot spots, complex fluidic connections, and mechanical design. This paper reviews the advances in electronic chip cooling in the last decade and provides a vision for code signing integrated cooling systems. For various heat fluxes on each side of a chip acting as discrete heat source, the current single-phase cooling technology is projected to provide adequate cooling, albeit with high pressure drops. Effectively mitigating the high temperatures surrounding local hot spots remains a challenging issue. Various forms of tabulators above the chips, different geometric arrangements of the chips positioned top and bottom wall of the duct serves very well in the heat augmentation technique with better performance.

Keywords - Convection heat transfer, chip cooling, channel, vortex generator

I. INTRODUCTION

The rapid advances in the computer industry have resulted in an increased need for reliable and efficient cooling technologies. Almost all of the electrical energy consumed by electronic devicesappears as heat, the power density that must be dissipated by individual chips called discrete heat sources. Advances in electronic devices have yielded increasing power dissipation per chip and resulted in increased heat flux densities. The subject of electronic cooling has therefore generated increased interest in the analysis of fluid flow and heat transfer in discrete heating situations. To avoid unacceptable temperature rises in electronic devices, an industrial system and metallurgy to prevent thermal problems, improvements in cooling methods are obligatory. Heat transfer enhancement is pertinent to the design of compact heat exchangers as automotive industry, electronic cooling, spacecraft, and aircraft applications.

II. CHANNEL WITH DISCRETE HEAT SOURCE

A summary of the important numerical investigations of discrete heat sources in different array form representing electronic chips for a laminar flow is presented in Table 1. The buoyancy effected secondary flow created by the discrete heat sources and the onset of instability are responsible for enhancement of heat transfer rate. This fact also leads to the reduced flow rate, which in turn reduces power consumption. Several researchers have studied the effect of discrete heat sources in array form onto mixed convective the heat transfer augmentation experimentally using air as working fluid considering laminar flow. T. Pirasaci [1]worked with 8×4 protruded heat sources with uniform heat flux on the lower and upper wall of a channel at various Reynolds number (Re), modified Grashof number (Gr), Richardson number (Ri) and height/width ratio (H/W) and have found that Row averaged Nusselt number (Nu_{Dh}) increases with increase of Ri. A. Dogan[13] worked with 8×4 flush mounted heat sources positioned on the top and bottom wall with AR=6, and with different Gr and Re values and observed that the surface averaged Nusselt number 1st decreases than increases with the increases with the row number.S. Chen, Y. Liu [15] attempted to find the optimum spacing ratio between the heated elements to get better heat transfer rate with an improved performance.

	ne. 1	Summary of impo	ortan	t investigations of discrete in	1 arra	ty form in faminar flow
Author	~	Parameters	~	Observations	~	<u>Remarks</u>
T.	\succ	32 protruded		For all heater rows Nu _{Dh}	\succ	Buoyancy affected
Pirasaci		heat sources in		number increases with		secondary flow is more
1]		8×4 array form		the increase in Ri _{Dh}		effective at the greater
		H/W = 1/2, 1/4,		number.		values of H/W ratios.
		3/20		For bottom heaters	≻	Convection heat transfer
		Re=2150,		differences in Nu _{Dh}		effects are more important
		1450, 850		numbers decrease for the		for the first four rows of
	\succ	$Gr = 3 \times 10^{\circ}$,		first four rows of heaters		bottom heaters.
		$2 \times 10^{\circ}, 1 \times 10^{\circ},$		with the increase in Ri _{Dh}	\succ	A device placed on the top
	\succ	Richardson		number (the same not		wall will realize
		number has		observed for other rows		temperatures much higher
		been obtained		of bottom heaters and		than that of the lower wall.
		between 0.02		for all rows of the top	\succ	Electronic components with
		and 12.5.		heaters)		the greatest power
	≻	Walls are	\triangleright	The fact that the heat		dissipation should be placed
		maintained		transfer enhancement is		on the first rows at the
		insulated and		largest for low Reynolds		bottom and top walls.
		adiabatic.		numbers, suggests that	\succ	For the conditions of this
	≻	Rectangular		heat transfer may be		study, top heaters are more
		channel		enhanced due to		affected by the forced
				buoyancy-induced flow		convection flow.
				by reducing the flow rate	\succ	Some important effects of
				and hence the ventilation		the secondary flow can be
				power requirements.		seen for small Reynolds
				The increase in Re _{Dh}		numbers and low aspect
				number improves the		ratios, these effects vanish
				heat transfer, (Nu _{Dh}) _{avr}		for high values of aspect
				for all values of H/W.		ratios.
				Heater temperature		
				decreases importantly by		
				increasing Re _{Dh} number.		
				For top heaters high		
				values of temperatures		
				are obtained at low		
				values of Re _{Dh} number.		
А.	≻	32 flush-		Surface temperatures	≻	Buoyancy affected
Dogan et		mounted heat		increase with increasing		secondary flow and the
al.[3]		sources in 8×4		Grashof number		onset of instability causes
		array form.		The row-averaged		heat transfer augmentation
	≻	Channel,		Nusselt numbers first		above forced convection
		AR=6		decrease with the row		limit
		955≤Re _{Dh} ≤222		number and then increase	≻	Electronic components with
	~	0 17 10 ⁷		towards the exit as a		the greatest power
		$Gr=1.7 \times 10^{7}$ to		result of heat transfer		dissipation should be placed
	~	6.7×10 [°]	*	enhancement.		at the inlet and outlet
	~	Every walls	\succ	As the Reynolds number	~	sections of the channel.
		are maintained		is decreased for a given		Low power dissipation
		insulated and		Grashot number, heat		components should always
		adiabatic		transfer enhancement is		be placed around the middle
				obtained for the last rows	~	section.
			*	of the channel		Heat transfer augmentation
			\succ	Nusselt number		due to buoyancy-induced
				variations for the first		flow reduces the flow rate
				rows show a forced		followed by ventilation
				convection thermal entry		power consumption.
				region characteristic.		

S K Mandal. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) june 2016, pp.74-82

			Ν	II	r	
				Heat transfer		
				enhancement is largest		
				for low Re numbers		
S. Chen, Y. Liu [15]	AAA	9 heated resistors in 3×3 array form. Spacing ratio Rectangular chennel	A A	Better thermal performance could be obtained when the center-to-center distances between the resistors follow a geometric series. At Re = 800, when the spacing ratio (s_3/s_2) among the heated resistors is 1.8, the	~	The temperature distribution strongly depends on the spacing arrangements.
				highest temperature decreases by 8.24% and the temperature difference among resistors can reduce about 27.62% compared to that of the equi-spaced arrangement.		

III. CHANNEL WITH DISCRETE HEAT SOURCE TRIANGULAR SECTIONAL BAR AS VORTEX GENERATOR

A summary of the important numerical investigations of discrete heat sources in different array form representing electronic chips for a 2-D laminar flow with Triangular cross sectional bar in a plain duct is presented in Table 2. Several researchers studied numerically to improve the heat transfer rate through a rectangular channel with discrete heat sources of uniform heat flux inserting a triangular cross-sectional bar to create turbulence in the flow using air as working fluid. S. Alahyari Beig [2] applied Genetic algorithm combined with Gaussian Process to find the optimum location of vortex generator and tried to maintain a uniform heat transfer rate above each of the discrete heat sources, considering steady state forced convection heat transfer. Hakan F. Oztop [5] also performed similar task with different Re but did not performed optimization and obtained the position of triangular cross sectional bar where higher heat transfer rate has been obtained.

Author		Parameters		Observations		Remarks
S.	٧	3 blocks	٧	The optimization results	٨	A well trained GP can
Alahyari		attached to		show that the greater value		accurately predict the
Beig et		the bottom		of the standard		Nusselt number of each
al. [2]		wall (i.e.		deviationmultiplier, the		block separately which
		electronic		more uniform Nusselt		matches very well with
		chips)		numbers.		data obtained from the
	\succ	Re = 100,	\succ	The optimum location of		outputs of Navier–Stokes
		400,		vortex generatoris seen to		solver.
		800,1200		be above the first block for	\succ	GP could better manage
	\succ	Triangular		which uniformity is		missing data
		bar location		neglected	\succ	GP needs less amount of
		is varied,	\succ	The optimal locations of		training information for a
		Four cases (X		triangular bar for different		particular amount of error,
		= 4.6, Y =		value of Reynolds number		in comparison to other
		0.36 and X =		are almost the same.		prediction tools such as
		9.85, Y =	\succ	Hypotenuse of the		Artificial Neural Network.
		0.44) with Re		triangular bar plays an	\succ	The optimal position of the
		= 400, 1200		important role to create		vortex generator is
	\succ	All the walls		flow vortices.		independent of the
		are				Reynolds number.

Table. 2 Summary of important investigations of discrete heat source in array form in 2-D laminar flow

		maintained isothermal		•	The structure of flow pattern is not related to Reynolds number, it is just a function of the position
Hakan F. Oztop et al. [5]	AAA	Triangular cross- sectional bar position $400 \le \text{Re} \le 1300$ Both the top wall of the channel and the bar were isothermal	Insertion of a triangular cross-sectional bar enhances the heat transfer for all Reynoldsnumbers Best heat transfer was observed for the position of the bar with $y=3.5$. Insertion of a triangular bar affects the flow and temperaturedistribution and the flow deviates to the top wall of the channel andblocks for the position of $y=3.5$. When it is located to the top wall of the channel, the flow onlyimpinges on the blocks and the heat transfer at the channel exitincreases.	A A	Location of a block to the top surface of the channel makes abetter effect at the left vertical surfaces of the blocks. The bar can be used as a passive element to control heattransfer in heated blocks inserted into channel.

IV. CHANNEL WITH DISCRETE HEAT SOURCE AND OBLIQUE PLATE AS VORTEX GENERATOR

A summary of the important numerical investigations of discrete heat sources representing electronic chips for a flow through a duct inserting oblique plates at different angles using air as working fluid is shown in table.3. Horng-Wen Wu et al. [6] accomplished a numerical investigation on heat transfer enhancement of mixed convective flow in a horizontal block-heated channel by installing an oblique plate in cross-flow above an upstream block for internal flow modification induced by vortex shedding at various oblique angles, Re, Gr in unsteady state, with air as working fluid and obtained a fruitful consequence of the mixed convective heat transfer through the channel. H. W. Wu at al. [7] also performed the same task and obtained some outputs in modified form regarding heat transfer rate.

Table. 3 Summary of important investigations of discrete heat source in array form inserting oblique plate at different angles

Author		Parameters		Observations		Remarks
6.	٧	Oblique angle	٨	Installation of an oblique plate	٨	Installing an oblique
Horng-		varied		in cross-flow above an		plate can effectively
Wen Wu		between 30 ⁰		upstream block can effectively		improvethe heat transfer
et al.		to 90°		enhance the heat transfer		characteristics through
	\succ	Reynolds		performance of mixed		the modification of the
		number=260,		convection in the horizontal		flow pattern
		400 and 530		channel row	\triangleright	Coupling the buoyancy
	\succ	Grashof	\triangleright	Themaximum local Nusselt		effects and vortex
		numbers=0,		number for a given block		shedding has profound
		8000 and		occursat the front corner and		influences in
		3200000		the minimum value occurs at		determining the unsteady
	\succ	Pr=0.7		the groove between two blocks		fields and heat transfer
			\succ	For three Gr/Re ² values at a		characteristics.
				fixed value of Reynolds	\triangleright	At $Gr/Re^2 = 20$ the
				number, the maximum		strong buoyant upflow
				increase in time-meanoverall		along thevertical
				average Nusselt number is		surfaces of the blocks
				39.5% when the oblique angle		interacts with the wave
				is 60° with Gr/Re ² = 20		flows and strengthens

	1				r	4 9 4
						these flows across the
				<u> </u>		blocks
7.	\succ	H/W=2.5	\triangleright	When Gr/Re^2 is less than 0	\succ	Strong buoyant upflow
H. W.	\triangleright	L/W=25		wave flows generated by		along the vertical
Wu et al.	\triangleright	d/w=0.45		vortex shedding behind the		surfaces of the blocks
	\succ	h/w = 0.5		oblique plate pasts stronger		strengthen the wave
	\triangleright	Oblique angle		and faster across the first to the		flows behind the oblique
		=300, 600,		third block, then weaker and		plate.
		900		slower over the subsequent	\succ	Installing the oblique
	\succ	Re=260 to		two blocks.		plate locally accelerates
		530	\succ	The maximum increase in		the flow past the
	\triangleright	Gr = 0 to		time-mean overall average		passageway between the
		32,00,000		Nusselt number is 39.5% when		plate and the first block
	\succ	Pr=.7		the oblique angle is 60^0 with		but generates different
	\succ	Time		$Gr/Re^2 = 20$		patterns of wave motion
		increment	\succ	The value of average time-		induced by vortex
		=.0008		mean Nussel number along the		shedding and assist the
				block increases with increasing		heat transfer along the
				Grashof number for the		block.
				oblique plate	\succ	The strong buoyant
			\succ	At $Gr/Re^2 = 20$ the strong		upflow enlarges the size
				buoyant upflow along the		of both recirculation
				vertical surfaces of the blocks		zones. On the whole, the
				interacts with the wave flows		wave flows can improve
				and strengthens these flows		heat transfer along the
				across the blocks.		block
			\succ	The value of average time-		
				mean Nusselt number along		
				the block increases with		
				increasing Reynolds number		
				for the oblique plate as well as		
				for no oblique plate		

V. INSERTING NUMBER OF HEATED CHIPS

A summary of the important investigations of discrete heat sources representing electronic chips for a flow through a duct using air as working fluid is shown in table.4. Several researchers have studied the effect of discrete heat sources mixed convective heat transfer augmentation numerically as well as experimentally using air as working fluid. Y. Luis et al. [4] numerically investigated to fin the optimum spacing for four heated chips rested on a convective substrate in a channel and solved by splitting pseudo-time-stepping finite element method for a two dimensional mixed convection around 4 heat sources mounted on a thermally conducting substrate in a channel. A. Mazloomi et al. [11] numerically studied the conductive cooling of 1 rectangular chip heated from the bottom surface, connected to a heat sink and different configurations of a highly conductive material embedded in the chip, distributed in the lower thermal conductivity media are investigated and an optimal configuration for transferring heat to the heat sink has been achieved. The respective chip which they used for study is shown in fig.1 along with the dimensions.

Satish Kumar Ajmera et al.[13] studied experimentally mixed convection heat transfer in multiple ventilated rectangular enclosure with 3 numbers of discrete heat sources at bottom. Each of the 3 heat sources has been flush mounted at the enclosure bottom and subjected to uniform heat flux. They also proposed different correlations for Nusselt number within the range of parameters considered in the study. S. Chen et al. [16] investigated experimentally the effect of different arrangements of obstacles on cooling of simulated electronic package. They used a channel formed by two parallel plates, bottom plate is attached with 5 identical electrically heated square obstacles, perpendicular to the mean airflow.

Fig.1 Test geometry of the simulated electronic package used by S. Chen et al.[16]

Table.	4 Summary	of important	investigations	of discrete	heat source	e in a re	ctangular	duct both	experiment	ally
				and nume	rically					

Author		Parameters		Observations		Remarks
Y. Luis	≻	Rectangular cross-	≻	Conventional equi-spaced	≻	Spacing between heat
et al. [4]		sectional		arrangement is not an		generated elements are
		duct=L×0.5L		optimum option for mixed		important in reducing heat
	\succ	Inlet length=10l		convection situation.		accumulated damage to
	≻	Test section=9L	\succ	An optimum thermal		computer chips and high
		Outlet=21L		performance can be		density circuitry design.
		Different geometry		obtained when the center-		Temperature distribution
		arrangements		to-center distances between		strongly depends on
		• S_1, S_5 (distance of control of 1 ^{st p_2}		the chips follows a		When the center to center
		last block from		Maximum temperature and	-	distance of an element
		inlet & outlet of	ĺ ĺ	the maximum temperature		follows geometric series
		test section		difference can be decreased		the accumulated heat has
		respectively)=1.5		significantly for the ratio of		more space to dissipate and
		,0		1.2 compared to 1.0		a better thermal
		• $S_2, S_3,$	\succ	When the ratio is greater		performance can be
		S ₄ (spacing		than 1.2 the maximum		achieved.
		between each		temperature and	≻	Same methodology can be
		blocks)=0.618,0.		temperature difference		used to improve the TEF
		71,1,1.2,1.618,1.		have no dominant		such as high voltage
	~	8,2 4 blocks		variation.		heat exchanger heat sink
	-	4 010CKS				cooling fan within the chin
						set as well as PCB layout
						design
А.		Thickness,t=1.5 to	\checkmark	A considerable decrease in	\checkmark	Optimal configuration can
Mazloom		3.8		the maximum temperature		be obtained by using side
i [11]	\succ	$X_1 = 2 \text{ to } 8$		of the rectangularchip can		branches, parallel with the
		$X_2 = 2 \text{ to } 11$		occur by applying an		main channel, and also
		$W_2 = 0.5 \text{ to } 2$		efficient configuration of		increasing the thickness of
		Other geometrical	~	the conductive channels.	~	the main channel.
		configurations are		The maximum temperature		The application of
		1 block		with the assumption of	-	conductive cooling may be
		I DIOCK		constant volume fraction of		iustified more at small
				$k_{\rm h}$ material.i.e. $\phi=0.11$.		scales (micro- and
			\succ	By usinghalf of the cooling		nanoscales) where the
				material with the optimal		application of convective
				configuration, the chipdoes		cooling becomes
				not experience a great		inefficient.
				increase in temperature.	\triangleright	Using channels distributed
						in parallel with the main
						channel, and finally
						increasing the thickness of
www.ijera	a.con	n				79 P a g e

						cooling channels the optimum performance may be achieved.
Satish Kumar Ajmera[1 3]	AA AAA A A A	Flow velocity Heat flux, 277.78 to 4444.44 W/m^2 AR (L/H)=1 $270 \le \text{Re} \le 6274$ $7.2 \times 10^6 \le \text{Gr} \le 5.5 \times 10^7$ Richardson number obtained in the range 0.201-571 All the walls in the enclosure are insulated and considered adiabatic. 3 block	A	The heater nearest to enclosure inlet (heater-1) subjected lowest surface temperatures atall Reynolds numbers while the surface temperatures of heater-2 and heater-3 are almost same untilGrashof number attains a critical value. Nusselt numberis a strong function of Reynolds number while it increases sharplyat lower Richardson number but this increase is slow at higherRichardson number.	A A A	The component dissipating highest amount of warmth should beplaced near the enclosure inlet. The element with the lowestheat dissipation should be placed opposite to the enclosure inletfor higher Reynolds number and all values of Grashof number. For the lower Reynolds number and Grashof number, it shouldbe placed in between.
S. Chen et al. [16]	Å	Different side to side distances of square obstacles (in mm) • $S_1=19.05, 8.23, 5.$ 08, 11.08, 8.16 • $S_2=19.05, 13.17, 1$ 0.16, 17.72, 16.33 • $S_3=19.05, 21.08, 2$ 0.32, 28.35, 32.66 • $S_4=19.05, 33.724$ 0.64, 19.05, 19.05 5 block	A A	At Re=800, the highest temperature of the optimum arrangement could be reduced by 12% compared to equi-spaced arrangement and the maximum temperature difference among the 5 obstacles is lower than the equi-spaced arrangement by 32.1%. If the ratio is 1.6, the maximum temperature and temperature difference among 5 obstacles could be decreased significantly. When the ratio is further increased to 2, an opposite trend is observed	A	Better thermal performance could be obtained when the side to side distances between the obstacles followed a geometric series.

VI. INSERTING DISCRETE HEAT SOURCES IN RECTANGULAR DUCT USING DIFFERENT FLUIDS AND OSCILLATING CYLINDER

A summary of the important investigations of discrete heat sources representing electronic chips for a flow through a duct not using air as working fluid and an oscillating cylinder is shown in table.4. Aziz Koyuncuoglu et al. [8] uses monolithic liquid for cooling the electronic chip in a Novel CMOS compatible micro channel heat sink experimentally under various heat flux and coolant flow rates. Wu-Shung Fu [9] numerically investigated the effect of oscillating cylinder on the heat transfer from heated blocks in a channel flow and arbitrary Lagrangian–Eulerian kinematics description method is adopted to describe the flow and thermal fields. A penalty consistent finite element formulation is applied to solve the governing equations. Mohammad Hemmat Esfe et al. [12] investigated numerically the laminar mixed convection flow of Al2O3/water nanofluids in a horizontal adiabatic channel where two hot obstacles are mounted on the bottom wall. Three thermophysical models including temperature-dependent and temperature-independent relations are selected for the study.

Table. 5 Summary of important investigations of discrete heat source in a rectangular duct using nano fluid and oscillating cylinder

Author	Parameters	Observations	Remarks
Aziz	$\blacktriangleright \text{ Heat flux}(W/cm^2)$	The micro channel heat	\succ 50 W/cm ² heat flux in
Koyuncu	• 7.86 to 8.04	sinks were able to extract	steady state continuous
oglu et	(100µm 10-	up to 127 W/cm ² heat flux	operation from the entire
www.ijera	a.com		80 P a g e

S K Mandal. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 6, Issue 6, (Part -6) june 2016, pp.74-82

al. [8]	 channel device) 13.1 to 13.7 (200 µm 10-channel device) 44.8 to 49.9 (100 µm single channel device) Coolant flow rate(ml/min) 1 to 2.8(100 µm 10-channel device) 1 to 4 (200 µm 10-channel device) 100 to 400 (100 µm single channel device) 	 froma hot spot. Heat flux values up to 50 W/cm²were successfully removed from the entire chip surface. A singlechannel heater, simulating a hot spot on a CPU was operatedsuccessfully up to 127 W/cm² heat flux. For both the 100 mmand 200 mmwidechannels, the friction factors estimated by the laminar theory arelower than the experimental results. 	 heated surface. slightly higher hydraulic diameters may be fabricated for lower thermal resistance values The overall performance of the micro channel heat sinks is comparable with the suggested correlations from the literature and it can be improved further by optimizing the channel dimensions. The fabricated micro channel heat sinks are capable of cooling high heat flux electronic devices such as CPUs.
Wu- Shung Fu [9]	 Reynolds Number = 100, 250, 500 Oscillating amplitude= 0.05, 0.1, 0.2, 0.4 Oscillating frequency= 0.1,0.2,0.4 	 Heat transfer from heated blocks is enhanced remarkably as theoscillating frequency of the cylinder is in lock-in region. The influence of oscillating amplitude on the heattransfer rate is not obvious under the lock-in region. 	The heat transfer rate is increased when the Reynolds number increases.
Moham mad Hemmat Esfe [12]	 Richardson number= 0.1,1,5,10 Rayleigh number= 10³ to 10⁵ Nanoparticles volume fraction = 0 to 0.05 Different aspect ratios of obstacles (h/H)=0.1,0.15,0.2,0.2 5 (h=block height, H= duct height) 2 blocks 	 The difference between average Nusseltnumbers obtained from the three sets of thermo physical models does not exceed 3%. With increasing the nanofluid concentration from 0% to 5%, the average Nusselt number overthe obstacles increases less than 10%. The effects of various thermo physical models of nanofluids on the predicted average Nusselt number are insignificant, even for high concentration of 5%. 	 The predicted average Nusselt number increases slightly withan increase in nanofluid concentration. The predicted average Nusselt numbers for both obstacles increase with a decrease in Richardson number for a fixed Rayleigh number. The predicted average Nusselt number decreases with an increase in height or width of the obstacles.

VII. CONCLUSION

Several researchers have work on heat transfer augmentation passive techniques both numerically and experimentally using discrete heat sources in various array forms inserting triangular cross-sectional bar and oblique plate and oscillating cylinder as vortex generator and air or nanofluids in water as working fluid. And the following conclusions are drawn from the above survey.

- Buoyancy affected secondary flow and the onset of instability causes heat transfer augmentation above forced convection limit also reduces the flow rate followed by ventilation power consumption.
- The optimum location of triangular cross sectional vortex generator is seen to be above the first block and that too does not depend upon Reynolds number
- The maximum time average Nusselt number is obtained for oblique plate vortex generator angle 60° .
- Optimum thermal performance and uniform higher heat flux from each blocks acting as electronic chip can be obtained when the center-to-center distances between the chips follows a geometric series.
- The heat transfer rate from the electronic chip also depends upon the frequency and amplitude of the vortex generator as well as volume fraction of the nano particles in water acting as working fluid.

REFERENCES

- [1]. T. Pirasaci et al. "Experimental investigation of laminar mixed convection heat transfer from arrays of protruded heat sources", Energy Conversion and Management, Vol.52 (2011) pp.2056–2063
- [2]. S. Alahyari Beig et al. "Investigation of optimal position of a vortex generator in a blocked channel for heat transfer enhancement of electronic chips", International Journal of Heat and Mass Transfer, Vol. 54 (2011) pp.4317–4324
- [3]. A. Dogan et al. "Experimental investigation of mixed convection heat transfer in a rectangular channel with discrete heat sources at the top and at the bottom", International Communications in Heat and Mass Transfer, Vol. 32 (2005) pp.1244–1252
- [4]. Y. Lui et al. "An optimum spacing problem for four chips on a horizontal substrate-mixed convection", Computational mechanics, Vol.26 (2000) pp. 470-477
- [5]. Hakan F. Oztop et al. "Control of heat transfer and fluid flow using a triangular bar in heated blocks locatedin a channel", International Communications in Heat and Mass Transfer, Vol. 36 (2009) pp.878–885
- [6]. Horng-Wen Wu et al. "Effect of an oblique plate on the heat transfer enhancement of mixed convection over heated blocks in a horizontal channel", International Journal of Heat and Mass Transfer, Vol. 31, (1999),pp.1217-1235
- [7]. H. W. Wu et al. "Enhancement of heat transfer of mixed convection for heated blocks using vortex shedding generated by an oblique plate in a horizontal channel", Acta Mechanica, Vol.136, pp.77-89 (1999)
- [8]. Aziz Koyuncuoglu et al. "Heat transfer and pressure drop experiments on CMOS compatible microchannel heat sinks for monolithic chip cooling applications", International Journal of Thermal Sciences, vol. 56 (2012) pp.77-85
- [9]. Wu-Shung Fu et al. "Numerical investigation of heat transfer characteristics of the heated blocks in the channel with a transversely oscillating cylinder", International Journal of Heat and Mass Transfer, Vol. 47 (2004) pp.341–351
- [10]. Lyes Boutina "Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel", Applied Thermal Engineering, vol. 31 (2011) pp.2052-2062
- [11]. A. Mazloomi et al. "Optimization of highly conductive insert architecture for cooling a rectangular chip", International Communications in Heat and Mass Transfer, vol.39 (2012) pp.1265–1271
- [12]. Mohammad Hemmat Esfe et al. "Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids", International Journal of Heat and Mass Transfer, Vol.89 (2015) pp.783–791
- [13]. Satish Kumar Ajmera et al. "Experimental investigation of mixed convection in multiple ventilated enclosure with discrete heat sources" Experimental Thermal and Fluid Science vol. 68 (2015) pp.402– 411
- [14]. E.A. Barreto et al. "Effects of buoyancy and inclination for opposing mixed convection in a symmetrical heated duct with a plane symmetric sudden contraction-expansion", Experimental Thermal and Fluid Science, Vol. 74 (2016) pp.324–338
- [15]. S. Chen et al. "An optimum spacing problem for three-by-three heated elements mounted on a substrate", Heat and Mass Transfer vol.39 (2002) pp.3 – 9
- [16]. S. Chen et al. "Experimental study of optimum spacing problem in the cooling of simulated electronic package", Heat and Mass transfer, vol.37 (2001) pp. 251-257